
Informatica Economică vol. 14, no. 2/2010  19 

Component Approach to Software Development for Distributed  
Multi-Database System  

 
Madiajagan MUTHAIYAN, Vijayakumar BALAKRISHNAN,  

Sri Hari Haran.SEENIVASAN, 
Computer Science Department, BITS-Pilani, Dubai, UAE,  

jagan@bitsdubai.com, vijay@bitsdubai.com, bithari.sri@gmail.com 
 

The paper deals with a component based approach for software development in a distributed 
environment for the database retrieval operations. A Core Component for a distributed multi-
database system has been proposed. The core Component is modeled using three interfaces 
User, Administrator and Databases Handler. The User Interface is the starting point of 
access for the Core Component. The Administrator interface deals with access control 
privileges for users and local databases. The Database Handler facilitates global schema 
management and site management. 
Keywords: Assertion, Core Component, Component Based Software Development, Multi-
Database, Schema 
 

Introduction  
A Distributed Multi-Database system 

involves storage and retrieval of information 
from independent databases that are spread 
over multiple sites in a computer network. 
Each database can be implemented using 
different DBMS and different architectures 
that distribute the execution of transactions. 
The DDBMS gives a unified view of the 
entire databases to the user [1]. A distribute 
multi-database system offers scalability and 
reliability in modern information systems. 
This paper focuses on a component-based 
approach to software development involving 
retrieval operations from multi-databases. 
 
2 Related Work 
Substantial amount of work have been done 
on component based distributed database 
system over the past few decades and the 
complexities usually inherent in a distributed 
database are hidden from the user [2]. The 
idea of Software Engineering that encourages 
decomposition [3] of a system into logical 
units improves the scalability of the system, 
and it is very much applicable to multi-
database system. The present work deals with 
component design aspects for a multi-
database system.  
 
 
 

3 Component Design for a Multi-Database 
System 
The component design for a Multi-database 
does involve a core component with three 
supported interfaces for interaction with the 
other components of the system. Such a 
design permits the separation of 
functionality, user interface and data layer 
from each other. Multiple User Interface 
components can interface and interact with 
the core component concurrently. The 
separation of User Interface from the core 
component has an added advantage of being 
able to connect to multiple Distributed 
Database components.  

 
Fig. 1. Core Component for Multi-

Database System 
 
The component for the Multi-database is 
designed to support three main types of 
interfaces, namely, Component User, 

1 



20  Informatica Economică vol. 14, no. 2/2010 

Component Administrator and Database 
Handler as shown in Figure 1. 
 
A. Component User: 
The Component User interface acts as an 
entry point to the core component of a multi-
database system. An example of the 
Component User could be a web based 
application that provides the user interface to 
accept a query and then display its result. 

 
B. Component Administrator: 
The Component Administrator interface is 
used to configure, create and maintain local 
databases. This interface has been separated 
from the normal User Interface in an attempt 
to increase the security of the system. The 
Component Administrator sets access control 
privileges for users and local databases. 
 
C. Database Handler: 
The Database Handler interface performs the 

following functions: 
 Global Schema Management. 
 Site Management. 
 Facilitate query execution across various 

components. 
 Managing Assertions for Components. 
 
4 Problem Description 
The Core Component for Multi Database 
System (shown in figure 1) performs 
semantic integrity control and retrieval of 
information using Database Handler. The 
Database Handler Component shown in 
figure 2 consists of the following sub 
components such as Schema Manager, 
Assertion Manager, Site Manager, and 
Execution Manager. The user submits a 
query to the core component through the 
User interface and the core component 
further connects to the Database handler for 
retrieval of data by connecting to the 
appropriate site. 

  

 
Fig. 2. Block Schematic for Database Handler using UML 2.0 

 
5 Database Handler 
The Database Handler has the following sub-
components: 
 Schema Manager. 
 Site Manager. 
 Execution Manager. 
 Assertion Manager. 

The following subsections describe their 
functions in detail. 
 
A. Schema Manager:  

The Schema manager is used to store the 
Global Schema of the Multi-Database system 
as viewed by the component’s users. All the 



Informatica Economică vol. 14, no. 2/2010  21 

queries handled by the Multi-Database 
system are designed for this global 
conceptual schema. 
The schema manager checks the query for 
any semantic errors that arise due to 
representational differences and naming 
conflicts. It resolves semantic conflicts by 
providing an explicit translation process. The 
resolution of the conflict is made possible 
with the help of an integrated global schema. 
Information systems often contain 
components that are based on different 
schemas of the same or intersecting domains. 
These different schemas of related domains 
are described in meta-models that fit certain 
requirements of the components such as 
representation power of tractability [4]. For 
instance, a database may use SQL or an 
object oriented modeling language. A web 
service described in XML schema may be 
enriched with semantics of the domain. All 

these different types of schemas have to be 
connected by mappings stating how the data 
represented in one schema is related to the 
data represented in another schema. 
Integrating these heterogeneous schemas 
requires different means of manipulation for 
schemas and mappings and the Schema 
Manager perform this task. It should provide 
operators such as match that computes a 
mapping between two schemas. An 
important issue in a schema management 
system is the representation of mappings 
which can be categorized as intentional and 
extensional mappings [5]. Intentional 
mappings deal with the proposed semantics 
of a schema and are used, for example, in 
schema integration. Extensional mapping is 
used if the task is data translation or data 
integration. 

 

 

 
Fig. 3. Block Schematic for Site Manager using UML 2.0 

 
B. Site Manager: 

The Site Manager is made up of five sub 
components as shown in figure 3: 
 Site Handler. 
 Fragmentation Manager. 

 Replication Manager. 
 Failure Management. 
 Schema Map. 
 
 



22  Informatica Economică vol. 14, no. 2/2010 

Site Handler: 
The Site Handler manages connections to the 
sites of the individual databases and 
execution of sub queries at a given site. It 
provides an interface to query the various 
local sites [6]. Furthermore there is a separate 
component called the Failure Management 
component that is responsible for managing 
temporary as well as permanent failures of 
any database sites that make up the 
distributed multi-database system. The same 
component is also responsible for updating a 
site that has come online after temporarily 
becoming offline or unavailable. 

 
Fragmentation Manager: 
The individual databases in a Multi-database 
system may be partitioned horizontally or 
vertically on primary key values. This sub 
component utilizes the Schema Map to keep 
track of the multi-database system and 
constantly updates its log. The schema 
manager helps in translating query for the 
global schema to a query for the local 
schema [7]. This translation is done with the 
help of the Fragmentation Manager and 
Replication manager. 
 
Replication Manager: 
The Replication Manager subcomponent 
manages multiple copies of important 
database fragments of a multi-database 
system. It provides an interface to the failure 
manager. This component is used when a 
local query fails to execute due to an error 
(either with the connection or with the site 
itself.). Some important fragments of the 
multi-database can be replicated for ensuring 
availability [8]. 

 
Failure Management: 
This component is invoked by the Site 
Handler when an error is encountered [9]. 
The component checks with the Schema 
Map, Replication Manager and 
Fragmentation Manager to see if the failed 
query can be executed without compromising 
the integrity of the Multi-database system. It 
generates new localized queries whenever 
there are alternatives. 

 
Schema Map: 
The Schema Map sub component provides an 
interface to the Execution Manager. It plays 
an important role in converting the global 
schema based queries into localized queries 
and passing it on the site handler where the 
local queries are executed and their results 
passed on back to the Schema Map [10]. 
 
C. Execution Manager: 

The Execution Manager provides an interface 
for the external components to pass on 
queries to the Database Handler Component. 
The Execution Manager initially accepts the 
query from the uniform user interface and 
then utilizes the Assertion Manager’s 
interface to check the preconditions. After 
confirming that the preconditions have been 
satisfied, the Execution manager passes on 
the query to the Site Manager. The returned 
results are then processed for any post 
conditions as applicable and then passed on 
to the external interface that originally 
submitted the query. The Site Manager 
returns the query result to Execution 
Manager. 
 
D. Assertion Manager: 

The Assertion Manager enforces the pre-
conditions of the input query involving 
information retrieval from multi-database 
system. The post-conditions include 
connection status, error types, log files 
related to retrieval operations for each query. 
The error occurred during the process of 
information retrieval can be syntactic error, 
semantic errors. The semantic error can be 
categorized as follows: 
1. Errors arising due to naming conflicts [11]. 
2. Errors arising due to policy conflicts.  
The Assertion manager checks the query for 
errors arising out of naming conflicts and 
representational differences are handled by 
Schema Manager. The errors arising out of 
differences in policies and privileges of the 
Multi-database systems are handled by 
Access Control unit. 
 
 



Informatica Economică vol. 14, no. 2/2010  23 

6 Pre-conditions 
The asserting statement undergoes check for 
preconditions. Preconditions [12] are values 
or parameters passed to a method, to be used 
for the functioning of the program. Assert 
statements can be used to check the validity 
of the parameters passed before they get used 
in the body of the method. From server point 
of view, preconditions express the 
requirements that clients must satisfy 
whenever they call a component’s code, and 
are therefore evaluated at their entry point. 
The pre-conditions can be defined, stored and 
managed by the component administrator. 
The user can also have the option of 
specifying the pre-conditions through 
“Having Clause” or SET FILTER to 
command in SQL. The pre-conditions can be 
read from input file and passed to component 
administrator. Pre-Conditions can also 
involve conditional logic using <and>, <or> 
and <not> operators. The global schema is 
consulted while checking the correctness of 
names relating to DBMS, tables, attributes 
and key constraints. 
 
Algorithm: Pre-condition: 
The algorithm given below checks all the 
pre-conditions stored in the input file and 
enforces them. This can be accomplished by 
running a code that detects all the key words 
in SQL, and in the present work SELECT 
statement has been considered. A proper 
input is from the starting character of 
document to the second SQL keyword found 
in the input. This part is sent to the pre-
condition routine to check for the correctness 
and the algorithm given below checks the 
syntax of the statement.  
  
Algorithm Precond(x, indx, indxa) 
INPUT:  
x: The input string given by the user, 
corresponding to the SQL query. 
indx: This is of the type integer. It refers to 
the current processing point of input 
statement x. Its default value is 0. 
indxa: This is of type integer. It refers to the 
current processing point of actual statement 
a. Its default value is 0. 

Internal Variables: 
a: This is a string variable. It represents a 
symbol table. It stores the syntax for the 
required SQL statement. While parsing the 
input, the tokens are matched with the entries 
in “a”. 
i: This is of type integer. It refers to the 
position pointer of the user statement. 
ia : It is position pointer for the actual syntax 
stored in “a”. 
c: This is a temporary string variable. 
z: This is a temporary integer variable. 
OUTPUT : Boolean output stating whether 
the syntax is correct. 
I. Read the input query and pre-conditions 
from the input file and pass them to 
Component Administrator.  
II. Perform parsing for the input query as 
shown in steps from 1 to 2.4. 
 
1. a <-  
"SELECT$ 
[*|column_name1,column_name2,....] 
$FROM$tablename1[,tablename2,...]$[WHERE 
$condition_and|or_condition...]$[GROUP 
BY$ column- list] $ [HAVING $""  
conditions""]$[ORDER BY$""column-list"" 
ASC|DESC]$" 

 
action: Symbol Table for the instructions. 
The array with which the input symbols 
should be checked. a has '$' as the key to 
separate between spaces,'['&']' to hold the 
optional parameters. 
{ 

2.      while(x==NULL) 
action: Loop till the Lexer tokens are empty. 
i.e Loop untill the whole input statement is 
checked completely. 
{ 

2.1     i <- next positon of $ in x 
action: Counter for input strings.Lexer 
pointer for the input string. 
2.2     ia <- next positon of $ in a 
action: Counter for the array a.Lexer pointer 
for the string to be checked in the symbol 
table. 
2.3   If a[0]=="[" Then 
action: Compare the symbol table for its 
attribute of an optional keyword. 
{             

2.3.1 indxa <- indxa + 1 

action: Get the next lexer token from Symbol 



24  Informatica Economică vol. 14, no. 2/2010 

table.This is done because it reaches the 
actual strings to be compared(the position of 
'[' is passed. 
} 

2.4   If i>=indxa Then 
action: Compare lexer's token of the input 
and the symbol table for input. 
{ 

2.4.1  length <- ia-indxa 
action: Calculate the length of the actual 
string in the symbol table so that it is 
compared for the completeness. 
2.4.2  If length>=14 and x[i] =' ' Then 
action: If the length is greater than 
14(minimum required length for select 
statements) and the position after the 14th 
position is empty. 
{ 

2.4.2.1 If the substring of x between 
indx and length = The substring of a 
between indxa and length Then 

action: if the above condition is true then it 
will compare the substring between lexer 
pointer of input string and the current 
pointing position with the symbol table 
elements. 
{     

2.4.2.2 indx <- next position of $ in x+1 
action: if the above comparison is true then 
go to the next lexer token in the      
input. 
2.4.2.3 indxa <- next position of $ in a 
+ 1 

action: Go to the next token in the symbol 
table. 
If x[indx+1]=NULL Then 

action: Check if the next position is the end 
of the input string. 
return true 

action: if yes then "INPUT STRING IS 
MATCHED" RETURN  A TRUE    WORD. 
Else 
precond(x, indx, indxa) 

action: if no then call the same function to 
check the next tokens. 
End If 
} 

2.4.2.4  ElseIf length of x is less than 
14 Then 
Print error stating that "MINIMUM SYNTAX 
INPUT FAIL" 

action: If the length of input doesn’t exceeds 
14 then print an error "INPUT IS NOT 
COMPLETE".        
} 

2.4.2.5  Else 
action: If the position after the 14th position 
is not empty then check if symbol table has 
more elements to be checked. 
{ 
If indxa > 0 Then 

action: if the symbol table has terms to be 
checked then check if it is an optional 
condition. 
{ 
If substring of a between indxa-1 and 
indxa is "[" Then 
precond(x, indx, next index of "[" in a) 

action: If it is an optional entity then call the 
function again by giving the symbol  table 
position pointer as the point of optional 
entity. 
end if 
BREAK outside the loop. 

action: if the above condition fails then 
Break outside the loop. 
} 
End If 

2.4.2.6  Print error at substring (a, 0, 
ia) 

action: Print error that "SYNTAX IS 
WRONG" position can be mapped by giving 
the substring form start to the lexer pointer 
of symbol table in symbol table. 
} 
Else 

2.4.3  print error No proper syntax. 
Action:  if the input is empty or doesn’t  
follow any sequence then print error "INPUT 
IS INVALID" 
} 
} 
} 
substring(X,pos1,pos2) 

INPUT: String of characters from which 
substring is extracted.POS1 position 1 where 
the extraction should start. POS2 position 2 
where the extraction should end. 
Output: x1 substring of X. 
if (pos1<=pos2) then 
s1=X[p1-1] 
substring(X,pos1+1,pos2) 
return s1 

Perform lookup in the Global schema to 
validate database names, table names, 
attributes and key constraints. 
The Assertion Manager transfers control to 
the Execution Manager. 
 
Complexity: 
The Time Complexity is determined by the 



Informatica Economică vol. 14, no. 2/2010  25 

total number of input pre-conditions (say n) 
and can be expressed as O(n). 
The above algorithm is used for checking the 
precondition using assertion manager. It 
starts with the precond class which is the 
class name of the precondition component 
which takes 3 inputs. The first input 
corresponds to input query entered by the 
user. The second and third inputs are set to 0 
by default. Here the output will be a boolean 
value indicating whether the user query is 
valid and permissible. Finally, the Assertion 
Manager, transfers control back to the 
Execution Manger. 
 
7 Post-conditions 
Just like preconditions, there may be 
instances where a program needs to execute 
some post-conditions. Post-conditions need 
to be evaluated before each exit point in the 
method. For instance assert statements can be 
used to check for the validity of the returned 
values in a method that has multiple return 
statements. Similarly in Web based 
architecture post conditions inform about 
what the supplier (i.e. the component’s code) 
guarantees on return, if the precondition has 
been satisfied on entry. They have to be 
evaluated at all exit points of the 
component’s code. The server is required to 
execute the post conditions and client can 
infer useful information upon execution of 
post-conditions.  
After the successful execution of the user 
query, the post-condition algorithm returns 
the following information: DBMS type 
(MySQL, POSTGRES, MSSQL), Running 
as user <user-name>, total number of records 
accessed from all databases stored at the 
various sites. 
Algorithm: Post-Condition  
INPUT: Query Processing at the server. 
OUTPUT: log file and the client information 
after query execution. 
1. Connect to the databases using 
standard OLEDB connections. 
2. IF time out response or error 
returned from any database. 

Print database / table with given 
name doesn’t exist 

Open the log file (post.log) 
Write to file "current date: ERROR  

database / table name doesn't exist" 

ELSE 
Mount the data on the grid view 
Open the log file (post. log) 
Write to file "current date: 

SUCCESS default statement  entered".  
Print summary information on user 

name, names of databases and total 
number of records accessed.  
3. Exit. 

 
8 Implementation 
The implementation has been carried using 
the following system configuration:  
- Computing Systems Laboratory 

comprising of 72 nodes in a network of 
windows and Unix based workstations. 

- IXWebhosting.com (76.162.254.156): 
The following are the software loaded in 
the Server: MySQL, SQL, PSQL ,Java, 
J2EE, #C, ASP.NET, PHP, CGI.  

- Visionwebhosting.com (70.87.57.146): 
The following are the software loaded in 
the Server: MSSQL, PSQL, Java, Visual 
Studio 2008, J2EE.  

 
9 Conclusion 
This paper dealt in detail a component based 
approach for enforcing semantic integrity 
control in a distributed multi-database 
system. The core component design includes 
separate interfaces for User, Administrator 
and Database Handler. The Database Handler 
includes the sub-components Schema 
Manager, Site Manager, Execution Manager 
and Assertion Manger. The pre-conditions 
and post-conditions are handled by Assertion 
Manager and are implemented using .NET 
component based code.  
 
References 
[1] R. Neol, Scale Up in Distributed 

Databases: A Key Design Goal for 
Distributed System, May 17, 2004. 

[2] J. F. Kurose and K. W. Rose, 
Components of a Distributed Database 
System, May 2004. 

[3] R. S. Pressman, Software Engineering: A 
Practitioner Approach, 7th Edition, 
McGraw-Hill, 2009. 

[4] C. Quix, D. Kensche and X. Li, “Generic 
Schema Merging, Advanced Information 
Systems Engineering,” 19th International 
Conference, CAISE2007, Trondheim, 



26  Informatica Economică vol. 14, no. 2/2010 

Norway, pp. 127-141, June 11-15, 2007. 
[5] D. Kensche, C. Quix, Y. Li and M. Jarke, 

“Generic Schema Mapping,” Lecture 
Notes in Computer Science: Conceptual 
Modeling-ER2007, Springer Berlin, Vol. 
4801, 2007. 

[6] A. J. H. Peddernors and L. O. 
Hertzberger, “A High Performance 
Distributed Database System for 
enhanced internet services”, Lecture 
Notes in Computer Science, Vol. 1401, 
pp: 467-478, 1998. 

[7] M. Stonebraker, P. M. Aoki, W. Litwin, 
A. Pifer, A. Sah, J. Sidell, C. Staelin and 
A. Yu, “Mariposa: A Wide-Area 
Distributed Database System,” The VLDB 
Journal, Vol. 5, 1996. 

[8] K. P. Birman and T. A. Joseph, 
Exploiting Replication in Distributed 

Systems, ACM Press, New York, NY, 
1990. 

[9] A. S. Tanenbaum and M. Van Steen, 
Distributed Systems, Principles and 
Paradigms, Chapter 7 Fault Tolerance, 
pp: 362. 

[10] B. Thaleheim, “Component 
Construction of Database Schemes”, 
Proceeding ER’02, Lecture Notes in 
Computer Science, No. 2503, pp: 20-34, 
2002. 

[11] A. S Tanenbaum and M. Van Steen, 
Distributed Systems, Principles and 
Paradigms, Chapter 4 Naming, pp. 183. 

[12] Sun Microsystems, Java Boutique, 
[Online] Available at: 
http://javaboutique.internet.com/tutorials/ 
assertions/internal_invariants.html. 

 
Madiajagan MUTHAIYAN holds a M.S., in Software Systems from BITS, 
Pilani, India and a PhD student from BITS, Pilani-India. He has 14 years of 
College / University teaching experience and 2 years of experience in Blue 
Chip Software Company. Presently, he is working as Senior Lecturer, CS, 
BITS, Pilani-Dubai. His areas of interest include Component Based Software 
Engineering, Distributed Database Systems, Software Architecture, and 
Theory of Computation. He is a member of Professional bodies ACM, World 

Enformatica Society and Computer Society of India. 
 
Vijayakumar BALAKRISHNAN holds a Ph.D. in Computer Science from 
BITS, Pilani, India in 2001. He has 18 years of University teaching 
experience in CSE (National Institute of Technology, Tiruchirappalli, India 
and BITS, Pilani-Dubai, UAE) and 6 years of experience in computer 
industry. Presently, he is working as Associate Professor, CS, BITS, Pilani-
Dubai. His areas of interest include Distributed Database Systems, 
Component Based Software Engineering, Web Mining, Multimedia Systems 

and Open Source Software Development. He is member of Professional bodies ISTE (Indian 
Society for Technical Education), World Enformatica Society and Staff Advisor for Linux 
User Group, BITS, Pilani-Dubai. He is actively involved as organizing and judging 
committee member in annual students’ technical event TECHNOFEST at BITS, Pilani-Dubai. 
He has been involved in co-ordination and coaching the students of BITS, Pilani-Dubai for 
annual UAE National Programming Contest since 2005. 

 
Sri Hari Haran.SEENIVASAN is presently a final year student in B.E 
Computer Science at BITS, Pilani-Dubai. He has experience in IT section at 
ETA- M&E Company in Dubai during summer term / practice school in the 
year 2008. He has skills   in LINUX and .NET based software applications 
development. 


